Fetal Hydrops

Fetal cardiology perspectives

NEVIN M HABEEB, MD, FEAE, MSCAI
PROFESSOR OF PEDIATRICS, AIN SHAMS UNIVERSITY

Fetal Hydrops

Hydrops fetalis is defined as the accumulation of abnormal fluid in at least two different fetal compartments. It implies an excess of total body water, which is usually evident as extracellular accumulation of fluid in tissues and serous cavities.
Immune Hydrops
Maternal red cell alloimmunization
RH incompatibility

Non Immune Hydrops
85% of fetal hydrops
3 per 10,000 births

de Haan et al., 2005
De Haan et al., 2005 reported that NIHF has a favorable outcome in 27.5% of cases, with idiopathic NIHF carrying the worst prognosis.

Negative prognostic factors described are

- enlarged biventricular dimension
- early manifestation of pericardial effusion
- pulmonary hypoplasia secondary to pleural effusions

STEP 1: Urgent

Fetal imaging

- Detailed morphology obstetrical ultrasound in a tertiary care center and the assessment of the fetal venous and arterial circulation
- Doppler (MCA, venous, arterial)
- Fetal echocardiogram

Maternal blood

- CBC
- Kleihauer-Betke
- ABO blood type and antigen status
- Indirect Coombs (antibody screen)

Venereal disease research laboratory test for syphilis

- Acute phase titers (parvovirus, toxoplasmosis, cytomegalovirus, rubella)

Liver function tests, uric acid, coagulation tests (suspected mirror syndrome)

- SS-A, SS-B antibodies (fetal bradyarrhythmia)

Depending on ethnic origin: hemoglobin electrophoresis, G6PD deficiency screen
STEP 2: Invasive / referral / treatment

FISH or QF-PCR on uncultured amniocytes, followed by karyotype or microarray analysis

- PCR for CMV
- PCR for parvovirus-B19/toxoplasmosis (selected cases)
- CMV and bacterial cultures in selected cases
- Inform the laboratory to keep the amniotic cells and supernatant for future studies
- DNA extraction if alpha-thalassemia suspected
- Fetal lung maturity testing (depending on gestational age)

Fetal blood sampling (maternal fetal medicine specialist)

- CBC, white blood cell count differential, platelets
- Direct Coombs’ test
- Blood group and type
- Karyotype (standard) with genetic microarray consideration
- TORCH/viral serologies
- Protein/albumin/liver function tests (not on all cases)
- Hemoglobin electrophoresis (depending on ethnicity)

Cavity aspiration (may be done at the time of amniocentesis)

- Lymphocyte count
- Protein/albumin
- Creatinin/ionogram (ascites)
- PCR for CMV and viral and bacterial cultures

Consider consultation with neonatology (depending on gestational age)

STEP 3: Post-delivery Examination of the placenta

Neonatal survival

- Detailed physical examination
- Cardiac monitoring
- Cranial ultrasound
- Abdominal ultrasound
- Cardiac monitoring
- Echocardiography
- CBC, liver function tests, creatinine kinase, albumin, protein
- TORCH, viral culture
- Specialized testing guided by results of prenatal work-up

Neonatal / fetal demise

- Clinical pictures
- Fetal cells culture (skin, others)
- Freeze fetal tissues and AF supernatant
- Bank fetal DNA
- Skeletal survey
- Placental pathology
- Autopsy
Cardiac causes of non immune Hydrops

<table>
<thead>
<tr>
<th>Defect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural heart defect</td>
<td>Left ventricular outflow abnormalities:</td>
</tr>
<tr>
<td></td>
<td>• Aortic valve stenosis</td>
</tr>
<tr>
<td></td>
<td>• Aortic valve stenosis</td>
</tr>
<tr>
<td></td>
<td>• Coarctation of the aorta</td>
</tr>
<tr>
<td></td>
<td>• Truncus arteriosus</td>
</tr>
<tr>
<td></td>
<td>• Hypoplastic left heart</td>
</tr>
<tr>
<td>Right ventricular outflow abnormalities:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pulmonary valve stenosis/stenosis</td>
</tr>
<tr>
<td></td>
<td>• Ebstein anomaly</td>
</tr>
<tr>
<td></td>
<td>• AV-malformation</td>
</tr>
<tr>
<td></td>
<td>• Placental haemangiomus</td>
</tr>
<tr>
<td></td>
<td>• Umbilical cord haemangiomus</td>
</tr>
<tr>
<td></td>
<td>• Hepatic haemangiomus</td>
</tr>
<tr>
<td>Obstruction of venous return</td>
<td>• Superior/inferior v.cava obstruction</td>
</tr>
<tr>
<td></td>
<td>• Umbilical cord torsion/varix</td>
</tr>
<tr>
<td></td>
<td>• Intrathoracic-intraabdominal tumour</td>
</tr>
<tr>
<td>Tachyarrhythmia</td>
<td>• Supraventricular tachycardian</td>
</tr>
<tr>
<td></td>
<td>• Congenital heart block (in maternal collagen disease)</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>• Noonan syndrome</td>
</tr>
<tr>
<td></td>
<td>• Familial dilating cardiomyopathy</td>
</tr>
<tr>
<td></td>
<td>• Lysosomal disease</td>
</tr>
<tr>
<td></td>
<td>• Maternal type 1 diabetes</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>• Parvovirus B19, coxsackie-B virus, adenovirus</td>
</tr>
</tbody>
</table>
Structural heart disease
All diagnosed by fetal echo during anomaly scan

Coarctation of aorta

Aortic stenosis

Truncus arteriosus

AV valve regurge
Ebstein anomaly

Right atrial aneurysm

Premature closure of PFO
Management:
According to underlying cause
Digoxin can be tried
Specific intrauterine intervention
For the coming causes the first clue will be

1. Cardiac size: thoracic size (C:T): Cardiac divided by thoracic area ratio (normal, 0.25–0.35) or C:T circumference ratio (normal, <0.5)
2. Venous Doppler: Inferior caval (or hepatic venous) increased atrial reversal

Cardiomyopathies:
Hemodynamic assessment:

<table>
<thead>
<tr>
<th>Hydrops</th>
<th>None (2 pts)</th>
<th>Ascites or Pleural effusion or Pericardial effusion</th>
<th>Skin edema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous Doppler</td>
<td>UV</td>
<td>UV</td>
<td>UV pulsations</td>
</tr>
<tr>
<td>(Umbilical vein)</td>
<td>(Ductus venosus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV (2 pts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Heart Area/Chest Area)</td>
<td>≤ 0.35 (2 pts)</td>
<td>0.35 - 0.50 < 0.20 > 0.50 < 0.20</td>
<td></td>
</tr>
<tr>
<td>Cardiac Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal TV & MV RV/LV S.F. > 0.28 Biphasic filling (2 pts)</td>
<td>Holosystolic TR or RV/LV S.F. < 0.28</td>
<td>Holosystolic MR or TR dP/idt < 400 or Monophasic filling</td>
<td></td>
</tr>
<tr>
<td>Arterial Doppler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Umbilical artery)</td>
<td>UA (2 pts)</td>
<td>UA (AEDV)</td>
<td>UA (REDV)</td>
</tr>
</tbody>
</table>

Myocarditis:
Potential mechanisms underlying the development of fetal hydrops are anemia, myocarditis, and hypoalbuminemia as a result of hepatitis.

There is still no consensus about the treatment for fetuses with hydrops following viral infection. The optimal antenatal treatment appears to be a combination of conservative management in selected cases and intervention such as intrauterine transfusion to correct the anemia, plus thoracoamniotic shunting to treat pleural effusion or pericardial effusion in the more severe cases.

Arrhythmia

Tachyarrhythmia Bradyarrhythmia
Management of SVT:

1- Intermittent short RP tachycardia, present <50% of time not accompanied by cardiac or valve dysfunction >> no treatment
2- Short RP tachycardia present >50% of time, or any long RP tachycardia without cardiac dysfunction or hydrops >> digoxin
3- SVT with hydrops or failed to respond to digoxin without ventricular dysfunction >> flecanide or sotalol
4- SVT with hydrops and ventricular dysfunction >> amiodarone
Fetal atrioventricular block
Slow fetal HR, AV dissociation

- AV block with structural defect
- Isolated AV block
- Isoimmune AV block
Prognosis is extremely poor
Combined fetal and neonatal mortality >80%
The response to hemodynamic compromise is abnormal and often leads to abrupt, profound and lethal changes in clinical status
Isolated heart block:

In utero management:
- If heart rate dropped below 55/min with hydrops
- Early delivery once lung maturity is reached
- In utero pacing (under trial)
- No place for steroids except for ventricular dysfunction with pericardial effusion

Isoimmune AV block:

Due to transplacental transfer of autoantibodies produced by the mother (SSA/Ro and SSB/La), CHB occurs in 2% of sensitized mothers

- Some fetuses develop complete AV block from the start
- Pericardial effusion may occur out of inflammation
- Others pass from 1st to 2nd degree heart block with or without ventricular dysfunction
- Some fetuses may present by repolarization abnormality (long Qt even without HB)
Management:
Fetuses with established 3rd degree AV block
If ventricular rate <55/min and non reactive ± hydrops>>
terbutaline, early delivery for pacing
Steroids are given if there is evidence of myocardial dysfunction or pericardial effusion without hydrops (suggesting inflammation)

Non cardiac causes that causes congestive heart failure as a hemodynamic cause of hydrops:

- Anemia
- Diaphragmatic hernia or cystic hygroma
- Twin to twin transfusion recipient volume and pressure overload
Thank You