Refining Electrocardiography Interpretation
Criteria in Elite Athletes

Ahmed Tageldien Abdellah

MD, FRSM-London, EBAC-UK
Cardiology Department
Suez Canal University
Refining ECG Criteria in Athletes

- Why Should We Screen Athletes?
- What & How To Screen?
- ECG Abnormalities In Athletes
- When To Raise Red Flags?
- Value Of Screening In Practice
- Dilemma

Sports Classification based on Static and Dynamic Components
Refining ECG Criteria in Athletes

- Why Should We Screen Athletes?
- What & How To Screen?
- ECG Abnormalities In Athletes
- When To Raise Red Flags?
- Value Of Screening In Practice
- Dilemma

Athletes and Sudden Cardiac Death

- SCD is the leading cause of mortality in young athletes.
- Majorly due to diverse inherited & congenital cardiac diseases.
- Screening is necessary to identify those at high risk, thus saving lives.
- Competitive athletes have increased risk of SCD (2-2.8 fold).
Athletes and Sudden Cardiac Death

- Prevalence of CV diseases predisposing to SCD in athletes ranges 0.2 - 0.7%.
- Mechanism of SCD is usually ventricular arrhythmia.
- How: Exercise induced catecholamine surge acting on arrhythmogenic substrate.
- Precipitators: Dehydration, pyrexia, electrolyte imbalance & platelet aggregation.

Athletes and Sudden Cardiac Death

Competitive Athletes are 2.5 fold greater risk for SCD in comparison with their age & gender matched counterparts.
Recipe for Arrhythmia

- Platelet activation
- Infection
- Fever
- Trauma
- Dehydration
- Electrolyte imbalance
- Drugs
- Neurohomonal

Common Causes of SCD in Athletes
Causes Of Sudden Cardiac Death in Athletes

Refining ECG Criteria in Athletes

- Why Should We Screen Athletes?
- What & How To Screen?
- ECG Abnormalities In Athletes
- When To Raise Red Flags?
- Value Of Screening In Practice
- Dilemma
The 12-Element AHA Recommendations for Pre-participation Cardiovascular Screening of Competitive Athletes

Personal history
1. Exertional chest pain/discomfort
2. Unexplained syncope/near-syncope
3. Excessive exertional and unexplained dyspnea/fatigue, associated with exercise
4. Prior recognition of a heart murmur
5. Elevated systemic blood pressure

Family history
6. Premature death (sudden and unexpected) <50 yr-old due to heart disease
7. Disability from heart disease in a close relative <50 years of age
8. HOCM, DCMP, long-QT syndrome, Marfan syndrome, or clinically important arrhythmias

Physical examination
9. Heart murmur
10. Femoral pulses (to exclude aortic coarctation)
11. Physical stigmata of Marfan syndrome
12. Brachial artery blood pressure (sitting position)

ESC Screening Protocol for Competitive Athletes

- Echo.
- Holter
- Stress test
- MRI
- EPS
- Genetic
Refining ECG Criteria in Athletes

- Why Should We Screen Athletes?
- What & How To Screen?
- ECG Abnormalities In Athletes
- When To Raise Red Flags?
- Value Of Screening In Practice
- Dilemma

Electrical Changes in Athletes

- **What**: ST-T changes, channelopathies, bradycardia, ERP & hypertrophy.

- **Why**: Inherited, Congenital, ANS conditioning: increased vagal tone & sympathetic withdrawal/activation.

- **Cellular changes**: Functional down regulation of K currents & aberrant Ca handling
 - Frequent spontaneous activity
 - Prolongation of AP duration

- These changes could eventually lead to **ventricular arrhythmia**
The ESC criteria for ECG findings in athletes

<table>
<thead>
<tr>
<th>Group 1: Common and Training-Related Electrocardiographic Changes</th>
<th>Group 2: Uncommon and Training-Unrelated Electrocardiographic Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus bradycardia</td>
<td>T-wave inversion</td>
</tr>
<tr>
<td>First-degree atroventricular block</td>
<td>ST-segment depression</td>
</tr>
<tr>
<td>Incomplete right bundle branch block</td>
<td>Pathological Q waves</td>
</tr>
<tr>
<td>Early repolarization</td>
<td>Left atrial enlargement</td>
</tr>
<tr>
<td>Isolated QRS voltage criteria for left ventricular hypertrophy</td>
<td>Right atrial enlargement</td>
</tr>
<tr>
<td>Left axis deviation</td>
<td></td>
</tr>
<tr>
<td>Right axis deviation</td>
<td></td>
</tr>
<tr>
<td>Right ventricular hypertrophy</td>
<td></td>
</tr>
<tr>
<td>Ventricular pre-excitation</td>
<td></td>
</tr>
<tr>
<td>Left bundle branch block</td>
<td></td>
</tr>
<tr>
<td>Right bundle branch block</td>
<td></td>
</tr>
<tr>
<td>Long QTc interval (>440 ms in males; >460 ms in females)</td>
<td></td>
</tr>
<tr>
<td>Short QTc interval (<380 ms)</td>
<td></td>
</tr>
<tr>
<td>Brugada-like early repolarization</td>
<td></td>
</tr>
</tbody>
</table>

The American (Seattle) criteria for Normal ECG findings in athletes

<table>
<thead>
<tr>
<th>Normal ECG criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus bradycardia < 30 bpm</td>
</tr>
<tr>
<td>Sinus arrhythmia</td>
</tr>
<tr>
<td>Ectopic atrial rhythm</td>
</tr>
<tr>
<td>Junctional escape rhythm</td>
</tr>
<tr>
<td>First-degree AV block (PR > 200 ms)</td>
</tr>
<tr>
<td>Mobitz I second-degree AV block</td>
</tr>
<tr>
<td>Incomplete right bundle branch block</td>
</tr>
<tr>
<td>Isolated voltage criteria for LVH (absence of left atrial enlargement, left axis deviation, ST depression, T-wave inversion, pathologic Q waves)</td>
</tr>
<tr>
<td>Early repolarization (ST elevation with T-wave inversion in V1-V4)</td>
</tr>
</tbody>
</table>
The American (Seattle) criteria for Abnormal ECG findings in athletes

<table>
<thead>
<tr>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-wave inversion (in two or more leads V2-V6, II, aVF, or I and aVL)</td>
</tr>
<tr>
<td>ST depression (> 0.5 mm in two or more leads)</td>
</tr>
<tr>
<td>Sinus tachycardia</td>
</tr>
<tr>
<td>Pathologic Q waves (> 3 mm in depth or > 4 msec in duration in two or more leads except III and aVR)</td>
</tr>
<tr>
<td>Left bundle branch block</td>
</tr>
<tr>
<td>Left axis deviation (-30° to -90°)</td>
</tr>
<tr>
<td>Left atrial enlargement</td>
</tr>
<tr>
<td>Right ventricular hypertrophy (RV1 + SV5 > 10.5 mm and right axis deviation)</td>
</tr>
<tr>
<td>Ventricular pre-excitation</td>
</tr>
<tr>
<td>Brugada-like ECG pattern</td>
</tr>
<tr>
<td>Sinus bradycardia < 30 bpm</td>
</tr>
<tr>
<td>PVCs (> two PVCs per 10-second tracing or nonsustained ventricular tachycardia)</td>
</tr>
</tbody>
</table>

Caveats in the ECG screening Criteria

- High false positive rate (10-20%)
- Disqualifying healthy athletes from sports participation
- Appeal proposals
- Misleading the epidemiology of CV conditions affecting athletes
- Cost effectiveness
Refined American criteria for Abnormal ECG findings in athletes

Training related normal findings
- Sinus bradycardia
- First degree AV block
- Incomplete RBBB
- Early repolarisation
- Isolated QRS voltage criteria for LVH

Borderline (minor abnormal) findings
- Left Atrial enlargement
- Right atrial enlargement
- Left axis deviation
- Right axis deviation
- Right ventricular hypertrophy
- T-wave inversion in leads V1-V4 in Black athletes

Training unrelated abnormal findings
- ST segment depression
- Pathological Q waves
- T-wave inversions beyond V1 in Caucasian athletes; beyond V4 in Black athletes
- Complete LBBB or RBBB
- QTc ≥ 470ms
- Brugada like pattern
- Atrial or ventricular arrhythmias
- ≥ 2 PVCs per 10 sec

If found in isolation considered normal
If 2 or more patterns present considered abnormal

Comparison of ECG interpretation in screening athletes

<table>
<thead>
<tr>
<th>Condition</th>
<th>Combined (n=2491)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of an abnormal ECG using ESC recommendations</td>
<td>555 (22.3%)</td>
</tr>
<tr>
<td>Prevalence of an abnormal ECG using Seattle Criteria</td>
<td>289 (11.6%)</td>
</tr>
<tr>
<td>Prevalence of an abnormal ECG using Refined Criteria</td>
<td>132 (5.3%)</td>
</tr>
<tr>
<td>Number of identified conditions associated with SCD</td>
<td>10 (7 HCM; 3 WPW)</td>
</tr>
<tr>
<td>FPR when using ESC recommendations</td>
<td>21.9%</td>
</tr>
<tr>
<td>FPR when using Seattle Criteria</td>
<td>11.2%</td>
</tr>
<tr>
<td>FPR when using Refined Criteria</td>
<td>4.3%</td>
</tr>
</tbody>
</table>
Refining ECG Criteria in Athletes

- Why Should We Screen Athletes?
- What & How To Screen?
- ECG Abnormalities In Athletes
- When To Raise Red Flags?
- Value Of Screening In Practice
- Dilemma

ECG Abnormalities

<table>
<thead>
<tr>
<th>ECG Abnormalities</th>
<th>36th Bethesda Conference (ACC/AHA)</th>
<th>ESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPW</td>
<td>Athletes without structural heart disease, without a history of palpitations, or without tachycardia can participate in all competitive sports.</td>
<td>Athletes without structural heart disease, without a history of palpitations, or without tachycardia can participate in all competitive sports.</td>
</tr>
<tr>
<td></td>
<td>In athletes with symptoms, EP study and ablation are recommended. Return to competitive sports is allowed after corrective ablation, provided that the ECG has normalized.</td>
<td>In athletes with symptoms, EP study and ablation are recommended. Return to competitive sport is allowed after corrective ablation, provided that the ECG has normalized.</td>
</tr>
<tr>
<td>LQTS</td>
<td>Exclude any athlete with a previous cardiac arrest or syncopal episode from competitive sports.</td>
<td>Exclude any athlete with a clinical or genotype diagnosis from competitive sports.</td>
</tr>
<tr>
<td></td>
<td>Asymptomatic patients restricted to competitive low-intensity sports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genotype-positive/phenotype-negative athletes may still compete.</td>
<td></td>
</tr>
<tr>
<td>Brugada Syndrome</td>
<td>Exclude from all competitive sports except those of low intensity.</td>
<td>Exclude from all competitive sports.</td>
</tr>
<tr>
<td>ECG Abnormalities</td>
<td>36th Bethesda Conference (ACC/AHA)</td>
<td>ESC</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>CPVT</td>
<td>Exclude all patients with a clinical diagnosis from competitive sports.</td>
<td>Exclude all patients with a clinical diagnosis from competitive sports.</td>
</tr>
<tr>
<td></td>
<td>Genotype-positive/phenotype-negative patients may still compete in low-intensity sports.</td>
<td>Genotype-positive/phenotype-negative patients are also excluded.</td>
</tr>
<tr>
<td>ARVC</td>
<td>Exclude athletes with a probable or definitive diagnosis from competitive sports.</td>
<td>Exclude athletes with a probable or definitive diagnosis from competitive sports.</td>
</tr>
</tbody>
</table>

Refined American criteria for Abnormal ECG findings in athletes

- **Sinus bradycardia**
- **First degree AV block**
- **Incomplete RBBB**
- **Early repolarisation**
- **Isolated QRS voltage criteria for LVH**
- **Left Atrial enlargement**
- **Right atrial enlargement**
- **Left axis deviation**
- **Right axis deviation**
- **Right ventricular hypertrophy**
- **T-wave inversion in leads V1-V4 in Black athletes**
- **ST segment depression**
- **Pathological Q waves**
- **T-wave inversions beyond V1 in Caucasian athletes; beyond V4 in Black athletes**
- **Complete LBBB or RBBB**
- **QTc ≥470ms**
- **Brugada like pattern**
- **Atrial or ventricular arrhythmias**
- **≥2 PVCs per 10 sec**

If found in isolation considered normal

If 2 or more patterns present considered abnormal
Refining ECG Criteria in Athletes

- Why Should We Screen Athletes?
- What & How To Screen?
- ECG Abnormalities In Athletes
- When To Raise Red Flags?
- Value Of Screening In Practice
- Dilemma
ECG Screening for Competitive Athletes:

Meta-analysis

- Meta-analysis of 15 articles reporting on 47,137 athletes.

- CV conditions detected were 160 (0.3%) or (1 in 294)

- WPW was the highest prevalence (67/160, 42%)

- Sensitivity and specificity: ECG 94%/93%, history 20%/94% & PE 9%/97%

- False positive rate: ECG (6%), history (8%) & physical exam (10%)

ECG at initial evaluation

![ECG Images]
ECG at Holter Monitoring

Annual incidence rate of SCD/100,000 person, among screened competitive athletes and unscreened non-athletes 12–35 years of age in the Veneto in Italy, 1979 - 2004.

The incidence of SCD declined by 89% in screened athletes (P <0.001). However, the incidence of SCD did not change over that time in unscreened non-athletes.
Refining ECG Criteria in Athletes

➢ Why Should We Screen Athletes?

➢ What & How To Screen?

➢ ECG Abnormalities In Athletes

➢ When To Raise Red Flags?

➢ Value Of Screening In Practice

➢ Dilemma

Dilemma!

• Real prevalence & causes of SCD in athletes

• Normal, adaptive and maladaptive variants of CV response in athletes

• Pre-participation screening programs standardization

• ‘Certainly’ vs. ‘not sure’ findings

• False positive & false negative results, poly-investigations

• When to re-engage in competitive sports

• Cost-effectiveness
Take Home Message

- SCD in athletes is 2.8 fold more than non-athletes counterparts.
- Victims of SCD are often entirely asymptomatic before their initial presentation and demonstrate only subtle abnormalities on investigation.
- Pre-participation screening of competitive athletes is a preventive strategy that should be implemented routinely and effectively.
- This includes: History, Examination & ECG as initial step, followed by Echocardiogram and other cardiovascular investigations if needed.

Take Home Message

- The most effective strategy for screening for CV disease in athletes is ECG
- The refined ECG criteria improved the detection of true positive athlete cases
- ECG is 5 times > sensitive than history, 10 times > sensitive than physical exam
- ECG has higher positive & lower negative likelihood & lower false positive rate
- 12-lead ECG should be considered in standard screening for athletes while the use of history and physical examination alone should be re evaluated
Suggested Reading

✓ Machado M, Vaz Silva M. Benign and pathological electrocardiographic changes in athletes. Rev Port Cardiol. 2015 Dec;34 (12):753-70.