

Guidewires in 2017- an Update

Mohamad Ashraf Ahmad, MD

Lecturer of Cardiology – Assiut University

AGENDA

- · Historical background
- Components of the guidewire
- Specifications of the wires
- Recent guidewire
- Choice of guidewires
 - Workhorse wires
 - · Bifurcation lesions
 - Tortuous artery
 - Thrombotic lesions
 - Dissections
 - CTO

The Core of the wire

- It is the inner part of the wire.
- The proximal end is predominantly made of steel.
- The shorter distal end is generally either stainless steel, nitinol or durasteel.
- Core material determines properties such as tip load, flexibility, steerability, trackability, and support.

- The thickness of the core directly corresponds to the support of the wire; the thicker the core, the higher the support and the less the flexibility.
- · Core tapering
 - · Long taper
 - · Short taper

• Taperd tip:

- Conventional wires are typically 0.014 inches in outer diameter from the proximal end up to the distal tip.
- In more dedicated wires tapering of the tip facilitates penetration.

Coil and Cover

- Coils (shape retention and proper tactile feedback
- Polymer (plastic) cover gives excellent lubricity trackability with less tactile feed back.

Coating of the wire

- Hydrophilic coating:
 - Create a slippery 'gel-like' surface.
 - It makes the wire more lubricous and easier to advance.
 - Less tactile feedback.
- Hydrophobic coating:
 - Repels water to create a 'wax-like' surface which enhances tactile feedback but decreases slipperiness and trackability
- Hybrid coatings:
 - Combine hydrophobic tip coils for tactile feedback and tip control with hydrophilic intermediate coils for smooth device delivery..

Specifications of guidewires

- The specifications of a guidewire can be described using the following terminology:
- Torquability: The measured ability of a rotating element, like a shaft, to overcome turning resistance. The ultimate goal of achieving 1:1 steering.
- Trackability, deliverability or crossing: The wire's ability to follow the tip and to be advanced smoothly along the vessel, through stenoses or even occlusions.

- Tactile feedback: The kind of response the operator can detect regarding any resistance in torque or advancement occurring at the tip.
- Tip load or tip stiffness: Tip load is a measure of the force needed to buckle the tip when forced against a standard surface. The tip load of available guidewires typically varies between the range of 0.5–15 g.

- Support: A measure of a guidewire's resistance to a bending force.
- A more supportive wire can aid in device delivery and vessel straightening, while a less supportive wire can aid in accessing through tortuous anatomy.

	Product	Core*	Tip	Design	Diameter	Tip lead (g)	Tip coeting	Radiopaque (cm)	Support
Vir.	Zieger tägle:	Steel	Spring coll	Shaping ribbon	0.0141 mp	16/4	Hydrophilic	3	tiple
Mtr	Couger US	Nitrol	Spring coll	Shaping ribbon	0.014" mp	Ma.	Hydrophilic	3	Light
Abb.	Whisper Light Support	Steel	Polymer	Core-to-to-	0.014° mp	3.6	Hydrophilic	1	Light
Bic.	ChoiCE Floppy	Steel	Spring coll	Care-to-Sp	0.014"	0.0	Hybridt	2.8	Light
Abb	Powertage Ultraftio	Stool	GSI	Core-to-da	0.014"	0.9	Hydrophilic	3	Light
lise:	PT 2 light support	Nonel	Polymer	Shaping ribbon	0.014"	2.5	Hydrophilic	2	Light.
ME	Zinger medium	Steel .	Spring coil	Shaping ribbon	0.014" mp	n/a	Hydiophilic	3	Moderator
M¥	Cought MS	Nitinal	Spring coil	Shaping ribbon	0.014" mp	n/a.	Hydrophilic	3	Moderate
Abb	Balance middle weight	Mitiral	Coll	Shaping ribbon	0.014" mp	0.7	Hydrophilic	1	Moderate.
Ask	Side	Steel	Coli	Owe-to-tal	0.014"	0.7	Hydrophilic	3	Moderate
Ase.	Fielder FC	Steel	Polymen	Core-to-tai	0.014" #	0.0	Hydrophilic	3	Moderate
ltsc:	tage	Steel	Spring coll	Core-to-tip	0.014" mp	0.9	Hybrid t	3	Moderate
Abb	Powerture Nee	Steel	Coll	Core-to-to-	0.014° etp	0.9	Hydrophilic	3	Moderate
Abb	Whisper medium support	Steel	Polymer	Core-to-tip	0.014" mp	1.0	Hydrophilic	3	Moderate
Buc	10	Nitioal	Spring coil	Shaping ribbon	0.014"	1.1	Hydrophobic	2	Moderate
Abb	PR0150	Sed	Polymer	Core-to-tp	0.014" mp	15	Hydrophilic	3	Moderate.
Abb:	Cross-IT 100XT	Sted.	Spring cod	Core-to-tay	0.010° to	1.7	Hydrophilic	3	Moderate
Abb	Pilot 350	Steel	Polymer	Core-to-tay	0.014"	2.7	Hydrophilic	3	Moderato
lise	PT2 modeste support	Minst	Polymer	Shaping ribbon	0.014"	2.9	Hydrophilic	2	Moderate
Mt	Thursler	Swel	Spring cod	Cove-to-far	0.014"	m/a.	Hydrophilic	3	Extra
Mx	Dinger support	Steel	Spring coil	Shaping ribbon	0.014" mp	nia	Hydrophilic	3	Extra
Asa:	Grand slam	Steel	Spring coil	Core-to-tip	0.014*	0.7	Hydrophobic	4	Extra
Abbi	Balance heavy weight	Mitiral	Coll	Shaping ribbon	0.014" mp	0.7	Hydrophilic	45	fixtre
Boc	CholEE extra support.	Steel	Spring cold	Core-to-ta	0.014"	0.9	Hybridt	2.8	Extra
Abb	Powerture	Steel	Coll	Core-to-tar	0.014"	0.5	Hydrophilic	3	Extra
thic	Choice PT extra support	Shell	Polymer	Core-to-tip	0.014" rep	12	Hydrophilic	35	Extra
Abb.	Whisper extra support	Steel	Polymer	Core-to-tip	0.014° mp	1.2	Hydrophilic	3	Extra

	Product	Core*	Tip	Design	Dismeter	Tip load (g)	Tip coating	Radiopaque (cm)	Support
Buc .	Oxice standard	Stell	Spring coll	Com-to-tip	0.014" rep	nta	Hydrophilic	2.8	Light
Abb	Whisper Right support	Steel	Polymer	Com-to-tip	0.004" (10)	0.0	Hydrophilis	3	Light
Atta-	Powertum Utwafes	Sted	Gill	Core-to-Sp	0.014" rtpr	0.9	Hydrophilica	3	Light
Ara	Sion	Steel	Col	Common to tip	0.014" mp	0.7	Hydrophilic.	1	Moderate
Asa:	Fielder X7	Steel	Polymer	Com-to-tip	0.000" to	8.8	Hydrophilic	16	Moderate
Asa	Gaio First	Steel	Double coil	Core-so-sp	0.010" 104	15	Hydrophilic	15	1886
Asa-	Miracle 3	Steel	Spring coll	Com-to-tip	0.014° mp	3.0	Hydrophobic	11	Moderator
Asa	Ultimatelins 3	Steel.	Spring coll	Com-to-tip	0.014" mp	3.0	Hydrophilic	11	Moderate
Mir	Provis 3	Steel	Spring coli	Shaping ribbon	0.014" mp	3.0	Hydrophilict	100	Moderate
Asa	Gaia Second	Steel	Double coil	Com-to-tip	0.011" 104	3.5	Hydrophilic	15	nta .
Abb	Flot 200	5164	Polymer	Com-to-tip	0.094" vitu	4.1	Hydrophilic	3	Moderate
Ass	Mirade 4.5	Steel	Spring coll.	Core-to-tip	0.014" (q)	4.5	Hydrophobic	111	Moderate
Abb	Cross-17 200XT	Street	Spang coll	Con-to-tp	0.010" tp	4.7	Hydrophilic	3	Moderate
Abb	Progress 40	Steel	Spring coli	Com-to-tip	0.012" rtp	4.0	Hydrophilics	3	Moderate
Mu	Provide St.	Steel	Spring cold	Shaping ribton	0.014" rep	6.0	Hydrophiliet	1	Moderate
Asa	Mirade 6	Steel	Spring coli	Com-to-tip	0.014° mp	6.0	Hydrophobic	200	Moderate
Abb:	Cross-IT 300KT	Sted	Coll	Com-to-tip	0.0101 to	63	Hydrophilic	3	Moderate
Até:	Cross-FT 400KT	Steel	Coli	Core to bp	0.010° p	6.7	Hydrophilic	. 3	Moderate
Ata	Conferza Pro	Sted	Spring coli	Core-to-tip	0.000" to	9.0	Hydrophilic?	20	Moderate
Mir	Provis 9	Street	Spring coll	Shaping ribbon	0.009" \$	9.0	Hydrophilics	1	Moderate
AEb:	Propres 80	Steel	Coll	Com-so-sip	0.012" rep	9.7	Hydrophilict	1	Мобилон
Asa	Confiance Pro 12	Steel	Spring coll	Cole-to-tip	0.0097 to	12.0	Hydrophilict	20	Moderate
Asa.	Miracle 12	Sted.	Spany coll	Core-so-tip	0.004" rep	12.0	Mydrophobic	11	Moderate
Abb	Progress 140T	Steel	Coli	Core-to-tip	0.010" @	12.5	Hydrophilics	3	Moderate
Abb	Progress 2001	Steel	Coll	Com-to-tip	0.009" @	13.3	Hydrophilics	1	Moderate
Abb	Fragress 120	Steel	Coll	Com to to	0.010" mp	9.9	Hydrophilict	3	Moderate
Mir	Provis 12	Stelf	Spring coli	Shaping ribbon	0.000° \$	12.0	Hydrophilizt	3	Extra
MW	Plack 15	Steel	Spring coli	Shaping ribbon	0.0001 (9)	15.0	Hydrophilict	3	Extra

Which wire for which lesion?

- It depends on:
 - Vessel anatomy (tortuous, Angulated, ...
 - Lesion morphology (simple lesion, subtotal occlusion, CTO,
 - The device to be used (balloon, stent, IVUS, rotabalator,..)
 - Operators experience and preferences

Simple lesions (Workhorse wire)

- Short, concentric stenoses in the presence of a traightforward anatomy.
- Safe wire (atraumatic tip)
- Favourable torquability and trackability.
 - BMW, Choice floppy, ASAHI soft,

Tortuous anatomy

- In the case of severe tortuosity the emphasis needs to be placed on flexibility, lubricity and excellent trackability.
- The best choice might be a wire with a polymer/hydrophilic cover.
- Soft tip is more favourable, since the risk of vessel injury over multiple bends is increased with a stiffer tip.
- Therefore our first choice for such anatomy would be the BMW, the IQ, the ChoICE Floppy, the Whisper MS or the Pilot 50.

Bifurcations

- Jailed Wires; attention in jailing polymer covrerd wire due to risk of stripping the cover during retrieval...
- Recrossing the stent struts to enter a jailed branch needs a floppy and slippery wire with good torquability and trackability.
- Choice for bifurcation can be BMW, the IQ, the ChoICE Floppy, Choice PT the Whisper MS, the Pilot 50, Whisper ES

Acute or recent thrombotic occlusions

- BMW, IQ, or the ChoICE Floppy workhorse wires usually successful.
- Hydrophilic wires with a higher tip load (Whisper MS or the Pilot 50) may slightly increase the risk of subintimal dissection, although their use may be favourable when occlusion occurs within a tight stenosis or tortuous coronary segment

Wires in coronary dissection

- Usually floppy, coiled tip workhorse wire succeed bypass the dissection and navigate to the true lumen (BMW, IQ and choice floppy).
- Avoid the polymer covered slippery wires because they tend to go through the subintimal plane.

Wires in CTO

- Dedicated CTO guidewires.
- Anterograde approach:

Sliding

- · Micro-channels
- CTO < 6 month
- STAR technique
- Hydrophilic coated and polymer covered wires
- Fielder, Fielder XT, Fielder FC
- Whisper, Pilot 50, and Choice PT

Contolled drilling

- CTO with discrete entry point after failure of initial attempt with soft (intermediated wire)
- Stiff, hydrophobic non tapered wires,
- Miracles / Miraclebros

Penetration

- Blunt entry point
- Heavy calcific or resistent lesions
- Alternative to drilling as workhorse technique after failure of initial soft wire
- Superstiff taperd wires:
- Conquest /confianza (9 g, 12 g)
- Cross it XT 400
- MircalesBros 12

Retrograde approach

- Collateral crossing:
- Soft polymer coated wires either tapered, such as Fielder XT-R, or non-tapered, such as Sion black wire or Whisper LS.
- Attacking Among the most frequently used retrograde wires are Miraclebros 3, Gaia 1 and Gaia 2 over the closely positioned microcatheter.
- Wire Externalizations:
 ASAHI RG3, Prowater Flex

Complication of guidewires

- Dissection
- Perforation
- Wire fracture
- Tip entrapment

Take home message

- A lot of available guidewires with variable characters and specifications.
- Improper choice of guidewire may not only prolong the procedure, but also compromise its success.
- Operators therefore need to be aware of the most basic properties and technical background of guidewires, and be familiar (by hands and mind) with at least half a dozen of them.

