Microbiological diagnosis of infective endocarditis; what is new?

Dr Amani El K holy, MD
Professor of Clinical Pathology (Microbiology),
Faculty of Medicine, Cairo University

ESC 2017

Objectives

- Lab Diagnostic Approach
- Lab & clinical Challenges
 - Changing microbiology
 - Culture –ve IE
 - Special IE patients: S.aureus, Fungal, CIED
- Recommended Lab Work- Up
- Improved lab diagnosis
 - Increase the yield of blood culture
 - Serological and molecular methods
Lab Diagnostic Approach

• The criterion standard test for diagnosing infective endocarditis (IE) is the documentation of a continuous bacteremia (>30 min in duration) based on blood culture results.
• Never draw only 1 set of blood cultures; 1 is worse than none.
• The cornerstone for diagnosis & AST is multiple positive blood cultures
• Other lab methods improve diagnosis: serology & molecular techniques

Challenges in interpreting Blood Culture Results

• False negative: BC may be negative despite a supportive clinical evaluation.
• False positive: contamination
• Positive BC in presence of sepsis difficult to interpret.
• BC may yield a bacterium rarely associated with IE
The significance of positive blood culture results correlates with the following:

- The type of organism
- The clinical setting (coagulase-negative staphylococci [CoNS] are significant in patients with prosthetic valves but not in those with native valves)
- Multiple blood cultures positive for the same organism
- Shorter incubation time for recovery
- The degree of severity of clinical illness
IE In Egypt: Microorganisms Isolated From Blood Culture:

Blood culture was positive in 30.3% of 156 patients, so blood culture-negative endocarditis (BCNE) represented 69.7% of patients.

Challenges in Diagnosis of IE

- Rising rates of *S. aureus* endocarditis
- Healthcare- associated endocarditis
- Increased rates of antimicrobial resistance
- High rates of culture-ve in some regions: 56.4% in Algeria Vs. 2.5- 31% in Europe
- Immunocompromized patients
- Cardiovascular Implantable Devices
S aureus BSI Vs. IE

- A major clinical challenge is that at least 25% of *S aureus* BSI represent IE or metastatic infections.
- The question is whether a continuous bacteremia in the presence of an IV line is representative of IE.
- Blood cultures should only be drawn through IV lines for the purpose of diagnosing catheter-related BSIs and have limited value for answering this clinical challenge.
- **An important clue** to continuous bacteremia/IE is the presence of *S aureus* bacteriuria associated with hematuria. Hematuria in the setting of IE is due to embolic renal infarction or immunologically mediated glomerulonephritis.

Causes of Culture -ve IE

- **Inappropriate Blood Culture**

 - Fastidious microorganisms
Fastidious!

- *Brucella* spp.
- Nutritionally deficient Streptococci
- HACEK organisms
 - *Haemophilus* spp.
 - *Actinobacillus*
 - *Cardiobacterium hominis*
 - *Eikenella corrodens*
 - *Kingella kingae*
- *Coxiella burnetti* (Q fever)
- *Bartonella species* (cat scratch disease)
- *Legionella, Mycoplasma*
- *Chlamydia*
- *Aspergillus species*
- *Lactobacillus species*

Improved Lab Diagnosis

- Improve yield of culture techniques
- Serological Methods
- Molecular Detection
Increasing Yield of Blood Culture

- **Communication** with Lab: more sets (3) & more incubation time (3 weeks)
- **Volume**: BC result is volume-dependent:
 - In adults 10 ml/bottle are required.
 - Adequate sets: 2-3/24 hrs or 4 sets at 1 hr interval
- **Timing**: Before Antimicrobials
- Skin site preparation:
 - Choice of the Site
 - Avoid contamination from skin or draw through intravenous (IV) lines.

Streptococcus In Direct Gram stain of positive blood culture
Aspergillus in Excised Valve
Fungal infective endocarditis

- Most types of fungal IE have a low rate of positive blood culture results. At best, only 50% of *Candida* species are associated with positive blood culture results.
- *Aspergillus* and other molds are almost never retrieved from the bloodstream.
- Fungal endocarditis must always be considered in the clinical setting of culture-negative IE that fails to respond to appropriate antibiotic therapy.
- Antigen and antibody detection

Pacemaker infective endocarditis

- Establishing the diagnosis of pacemaker IE is difficult because of its subtle presentation, especially late-onset disease.
- The addition of pocket infection and the presence of pulmonary emboli to the Duke criteria have increased the rate of diagnosis from 16% to 87.5% of cases.
- Fever and/or a positive blood culture result without evidence of a primary source in patients with a pacemaker or implantable cardioverter-defibrillator should be considered to represent device-associated IE until proven otherwise.
Cultures of Cardiovascular implantable electronic devices (CIED)

- The AHA 2010 guideline update on CIED infections recommends that, when the CIED is explanted, culture of the lead-tip and Gram stain and culture of the generator-pocket tissue be obtained.
- However, percutaneous aspiration of the generator pocket should not be performed for diagnostic evaluation of CIED infection.

Serological Diagnosis

Useful if
- Blood Culture is –ve
- Fastidious organisms

Disadvantages:
- Cross reactions: e.g. Bartonella and Chlamydia
- High titers in endemic areas & with other chronic infections
Interpretation of the serology results:

- Positive titer for *Brucella* when antibody titers $\geq 1/320$
- *Bartonella* endocarditis when IgG titers $\geq 1:800$

Coxiella burnetii

- A single serum specimen is diagnostic if:
- Anti-phase I IgG antibody titer of $>1:800$ and IgA titer of $>1:100$ by MIF test indicate Q fever endocarditis (Duke Major)
- Usually high antibody response to both phase I and phase II Ag
Aspergillus Galactomannan Antigen

- using the Platelia EIA (Bio-Rad, Marnes-La-Coquette, France).
- Patients with an index >0.5 were considered positive for *Aspergillus* antigen

Molecular Techniques

Advantages:

- Detection by DNA amplification using PCR:
 - Multiplex
 - Broad-range PCR
- Needs no viable microorganisms
- Identify fastidious & non-culturable.
- Sera, valve or other tissue can be used
Limitations of Molecular Techniques

- Cost and availability of equipment
- Depend on the quality and nature of the specimen
- Affected by inhibitory substances in specimens
- Contamination
- No. and quality of DNA sequences in data base
- Results are not quickly available
- Choose a procedure standardized for clinical diagnosis

Lab Algorithm in Cairo University

Blood Culture: At least 3 sets (6 bottles), if negative:
- Serum:
 - Serological testing for Brucella, C.burnetii, Bartonella, M.pneumoniae, Legionella, Chlamydia
 - Galactomannan antigen
- Multiplex PCR: sepsis screen
- Broad range PCR followed by sequencing: under validation

Excised valves:
- Microbiology: Direct exam (Gram Stain, KOH Preparation for Fungi) & Culture
- Histopathology: Microorganisms & tissue reaction
Conclusions

IE remains a diagnostic challenge

• Blood culture remains the corner stone
• Increased yield of bacteria from Bl culture:
 – Without antibiotics administered before sampling
 – By increasing the volume of blood
• Fastidious bacteria need rich media, prolonged incubation time, and special culture conditions
• Serology: important diagnostic role in culture-ve endocarditis caused by *Brucella, Bartonella* and *Coxiella* & Galactomannan Ag detection
• Molecular techniques: promising in spite of limitations

Thank You